Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(13): 4712-4719, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36944107

RESUMEN

This study aims to understand and compare the evaporation dynamics of drops of healthy and pathological porcine blood (glomerulonephritis disease) evaporated on hydrophilic glass substrates at different surface temperatures (Ts): 23, 37, 60, and 90 °C. Subsequently, the different induced phenomena are characterized and described. Additionally, drops of water were evaporated at these four surface temperatures to better understand the difference between healthy and pathological porcine blood. Statistical studies were performed to analyze the evaporation rate, the maximum and average values of Marangoni numbers (Ma), and the evaporated specific time. The statistical tests showed significant differences in these parameters between healthy and pathological blood for each surface temperature. The mean and the maximum of the Ma increase with the increase in Ts caused by the increase in the temperature differences between the edge and the center of the drop. When comparing healthy and diseased blood, the Ma maximum and mean of healthy blood were higher than those of diseased blood for all Ts. Besides, this study emphasizes the influence of temperature on blood evaporation and the pattern caused by the Marangoni effect. These results demonstrate that differences between the two blood types are related to the disease and pave the way to developing a new methodology for medical decision-making.


Asunto(s)
Agua , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Porcinos , Temperatura , Agua/química , Sangre
2.
Heliyon ; 8(11): e11258, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36353154

RESUMEN

To characterize various induced phenomena and the blood of healthy sheep using several parameters, the evaporation dynamics of 72 drops of sheep blood evaporated at several temperatures: 23, 37, 60, and 90 °C on glass hydrophilic substrates were studied. This allows the prediction of the sheep blood pattern, knowing the surface temperature and vice versa. To determine the variation in the Marangoni number between the center and the triple line, an infrared thermography method was used to measure the temperature variation along the surface of the drop. Simultaneously, a high-performance camera was used to measure the variation in the height of the drop during the evaporation using a superior algorithm software for image analysis, drop shape analyzer, under controlled conditions (Humidity = 40%, Tatm = 23 °C). The study of the evaporation dynamics and pattern formation shows the effect of temperature on the flow circulation inside the drop, resulting in the final deposit. The results showed two categories corresponding to two different evaporation phenomena induced by the thermal Marangoni effect. Furthermore, to transform the induced pattern of sheep blood evaporation into a 3D image, a topographic study was performed using a highly accurate, fast, and flexible optical 3D measurement system. The topographic parameters were subsequently extracted from these 3D images. The statistical study showed a good correlation between the topographic parameters and the surface temperature, and a significant difference between each temperature group for each parameter.

3.
Sci Rep ; 12(1): 14983, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056037

RESUMEN

In this paper, the numerical solution for heat transfer through a rotating heat pipe is studied and a sensitivity analysis is presented by using statistical experimental design technique. Graphene oxide-molybdenum disulfide (GO-MoS2) hybrid nanofluid is taken as working fluid inside the pipe. The impact of the heat pipe parameters (rotation speed, initial mass, temperature difference) on the heat transfer and liquid film thickness is investigated. The mathematical model coupling the fluid mass flow rate and liquid film evolution equations in evaporator, adiabatic, and condenser zones of the heat pipe is constructed. The mathematical model is solved by implementation of "Particle Swarm Optimization" along with the finite difference method. The outcomes demonstrate that hybrid nanoparticles help to improve the heat transfer through the heat pipe and reduce liquid film thickness. The heat transfer rises with increasing temperature difference and reducing inlet mass, and it reduces slightly with rising rotation speed. The difference in liquid film thickness between the evaporator and condenser zones increases with increasing temperature difference and decreasing rotation speed. The impact of increasing the volume fraction of GO on the liquid film thickness is higher than that in the case of the MoS2 nanoparticles. However, an increase of the heat transfer is noticed in case of increasing the volume fraction of GO relative to increasing MoS2 concentration. Statistical analysis of the computed numerical data and the identification of significant parameters for total heat transfer are found using the response surface method. At 95% level of significance, the GO concentration in the hybrid nanofluid, inlet mass of the hybrid nanofluid and the temperature difference inside the evaporator zone of the pipe are found to be significant linear parameters for increasing heat transfer.

4.
Langmuir ; 37(10): 3139-3147, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33667105

RESUMEN

In this paper, we propose an experimental and numerical investigation for the impact of the surface tension and the continuous phase viscosity on the dynamics of the liquid bridge during the coalescence process in liquid-liquid systems. A specific configuration of a sessile drop in direct contact with another drop placed over it has been studied. Calculating the redefined Reynolds number Re, it is found that for all studied cases, the coalescence process is dominated by the inertial force. The first step of the work was the validation of the numerical model that has been performed in an axisymmetric coordinate system. This has been done by the comparison between numerical and experimental results obtained in the framework of experimental series realized in parallel for two different liquid-liquid (LL) systems: water drops in silicone oil (SilOil M40.165) and water drops in sunflower oil. A good agreement was found between different results for numerous parameters used for comparisons. It is found that for the first stages of the coalescence (at the start of the drops merging), for a given drop's viscosity, the dynamics of the dimensionless liquid bridge is conducted by the viscosity of the continuous phase where it is illustrated that the more the surrounded viscosity is large, the lower the rate of the liquid bridge growth, the lower the earlier radial velocity of the bridge, and the higher the external capillary pressure generated around the bridge. Moreover, it is depicted that the impact of the surface tension starts appearing after the complete development of the liquid bridge where it is observed that for the same surrounding phase viscosity, the propagation of the capillary wave is faster for a LL system with higher surface tensions than those of lower surface tensions.

5.
Adv Colloid Interface Sci ; 254: 22-47, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628116

RESUMEN

The formation of patterns after the evaporation of colloidal droplets deposited on a solid surface is an everyday natural phenomenon. During the past two decades, this topic has gained broader audience due to its numerous applications in biomedicine, nanotechnology, printing, coating, etc. This paper presents a detailed review of the experimental studies related to the formation of various deposition patterns from dried droplets of complex fluids (i.e., nanofluids, polymers). First, this review presents the fundamentals of sessile droplet evaporation including evaporation modes and internal flow fields. Then, the most observed dried patterns are presented and the mechanisms behind them are discussed. The review ends with the categorisation and exhaustive investigation of a wide range of factors affecting pattern formation.

6.
J Phys Chem B ; 122(18): 4922-4930, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29672056

RESUMEN

As discovered by Leidenfrost, liquids placed on very hot solids levitate on a cushion of their own vapor. This is also called the calefaction phenomenon, a dynamical and transient effect, as vapor is injected below the liquid and pressed by the drop weight. To account for the film vapor, we consider the surface tension magnitude as well as the Marangoni effect (in particular the thermal one) which arise with imbalance of surface tension forces. For standard liquids, these forces contribute to amplify the thickness of the film layer and the levitation of the droplet. Our findings imply the ability of recent binary mixture liquids, called self-rewetting fluids, to reduce the vapor film thickness and demonstrate the powerful influence exerted by different binary mixtures to enhance the heat transfer at high temperature. Such self-rewetting fluids are presenting a high value of surface tension at high temperature, and in which the Marangoni forces are inversed as from critical temperature. We consider our assay to be a way for improvement in the high temperature mass cooling applications.

7.
J Phys Chem B ; 121(48): 11002-11017, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29135258

RESUMEN

In this study, pattern formation during evaporation of bidispersed drops (containing 1 and 3.2 µm particles) placed on a smooth substrate at different temperatures is investigated. Five distinctive deposition patterns are observed depending on the substrate temperature: a relatively uniform pattern enclosed by a disk-shaped ring, a nearly nonuniform pattern inside a thick outer ring, a "dual-ring" pattern, a "rose-like" pattern, and a set of concentric rings corresponding to the "stick-slip" pattern. At drops edge, the particle size effect leads to the formation of three rings: an outermost ring formed by the nonvolatile additives smaller than 1 µm, a middle ring built by particles with size of 1 µm, and an innermost ring formed by the mixture of 1 and 3.2 µm. For temperatures between 64 and 99 °C, the depinning of the contact line causes the same particle sorting at the other deposition lines in the interior of the drop. However, the width of the zone between the outermost ring and the middle ring at the initial edge of the drop is found to be smaller than that at the other deposition lines. The size of the width is found to be dependent on the contact angle. Particle velocity is measured by tracking particles during the evaporation. It is shown that particle velocity slightly increases with time, but it rapidly increases at the last stage of the drying process, known as "rush-hour" behavior. The sudden change in the increase of the velocity occurs between the normalized time of 0.7 and 0.8 for temperatures from 22 to 81 °C. The increasing trend of velocity with time matches well with the theoretical model. The tracer particles are also used to measure the distance between the contact line and the nearest turning point of those particles return back toward the top of the drop due to the inward Marangoni flow. It is found that this distance decreases with increasing the substrate temperature.

8.
J Phys Chem B ; 121(23): 5824-5834, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28535066

RESUMEN

The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

9.
Langmuir ; 32(38): 9836-45, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27506399

RESUMEN

Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.

10.
Langmuir ; 32(10): 2378-88, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26881907

RESUMEN

We present an experimental study on the inversion of the Marangoni effect of a binary mixture droplet under a horizontal temperature gradient. In particular, we studied the dynamics and the evaporation behavior under these conditions. We show that a binary mixture (97% water-3% butanol) droplet has a tendency to migrate to warmer areas, as opposed to spreading in pure fluids. During the evaporation process, we distinguish three stages of evaporation that are correlated to the dynamics of the droplet.

11.
Langmuir ; 31(11): 3354-67, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25742508

RESUMEN

This study investigates pattern formation during evaporation of water-based nanofluid sessile droplets placed on a smooth silicon surface at various temperatures. An infrared thermography technique was employed to observe the temperature distribution along the air-liquid interface of evaporating droplets. In addition, an optical interferometry technique is used to quantify and characterize the deposited patterns. Depending on the substrate temperature, three distinctive deposition patterns are observed: a nearly uniform coverage pattern, a "dual-ring" pattern, and multiple rings corresponding to "stick-slip" pattern. At all substrate temperatures, the internal flow within the drop builds a ringlike cluster of the solute on the top region of drying droplets, which is found essential for the formation of the secondary ring deposition onto the substrate for the deposits with the "dual-ring" pattern. The size of the secondary ring is found to be dependent on the substrate temperature. For the deposits with the rather uniform coverage pattern, the ringlike cluster of the solute does not deposit as a distinct secondary ring; instead, it is deformed by the contact line depinning. In the case of the "stick-slip" pattern, the internal flow behavior is complex and found to be vigorous with rapid circulating flow which appears near the edge of the drop.


Asunto(s)
Nanopartículas/química , Temperatura , Volatilización
12.
Nanoscale Res Lett ; 8(1): 64, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23391481

RESUMEN

The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...